Disección de un caballo, grabado del Cours d´Hippiatrique, ou traité complet de la médicine des chevaux, Philippe-Étienne Lafosse, París 1.772

miércoles, 4 de noviembre de 2015

FORMACION ESTELAR (III)



La secuencia principal (SP): La fase más larga de la vida de las estrellas


Esquema de estrellas en su secuencia principal: Las zonas con convección aparecen representadas por bucles mientras que las zonas de radiación se representan por flechas quebradas. En la gráfica se representa una enana roja, una naranja de tamaño medio y una gigante azul.
Se llama secuencia principal a la fase en que la estrella quema hidrógeno en su núcleo mediante fusión nuclear. Aquí la estructura de la estrella consta esencialmente de un núcleo donde tiene lugar la fusión del hidrógeno al helio, y una envoltura que transmite la energía generada hacia la superficie. La mayor parte de las estrellas pasan el 90% de su vida, aproximadamente, en la secuencia principal del diagrama. En esta fase las estrellas consumen su combustible nuclear de manera gradual pudiendo permanecer estables por períodos de 2-3 millones de años, en el caso de las estrellas más masivas y calientes, a miles de millones de años si se trata de estrellas de tamaño medio como el Sol, o hasta decenas o incluso centenares de miles de millones de años en el caso de estrellas de poca masa como las enanas rojas. Lentamente, la cantidad de hidrógeno disponible en el núcleo disminuye, con lo que éste ha de contraerse para aumentar su temperatura y poder detener su colapso gravitacional. Las temperaturas del núcleo estelar más elevadas permiten fusionar, progresivamente, nuevas capas de hidrógeno sin procesar. Por este motivo las estrellas aumentan su luminosidad durante la etapa de secuencia principal de forma paulatina y regular.

La evolución posterior a la secuencia principal: La vejez de las estrellas

Cuando el hidrógeno desaparece en el centro de la estrella, la estrella comienza su vejez. A partir de este momento, su evolución será muy distinta en función de su masa.

Estrellas de masa baja e intermedia ( M < 9 MSol )

Fase de sub-gigante (SubG)

Cuando una estrella de menos de 9 masas solares agota el hidrógeno en su núcleo, empieza a quemarlo en una cáscara alrededor de éste. Como resultado, la estrella se hincha y su superficie se enfría, por lo que se mueve hacia la derecha en el diagrama sin variar mucho su luminosidad. Esta fase es la de subgigante y es un estado intermedio entre la secuencia principal y la fase de gigante roja.

Fase de gigante roja (GR)

Al evolucionar una sub-gigante hacia la derecha (temperaturas más bajas) en el diagrama, en un momento dado la atmósfera de la estrella alcanza un valor crítico de la temperatura que hace que la luminosidad aumente espectacularmente mientras que la estrella se hincha hasta alcanzar un radio cercano a los 100 millones de km: la estrella se ha convertido así en una gigante roja. Se estima que dentro de unos 5-6 millardos de años el Sol llegará a esta condición y devorará a Mercurio, a Venus y quizás a la Tierra.
Al igual que una sub-gigante, una gigante roja deriva su energía de quemar hidrógeno en helio en una cáscara alrededor de su núcleo inerte de helio. La fase de gigante roja termina cuando dicho helio se enciende mediante el proceso triple-alfa. En estrellas con masa inferior a 0,5 masas solares, la temperatura central nunca llega a ser lo suficientemente alta como para que se active el proceso triple-alfa, por lo que para ellas ésta es la última fase en la que la estrella se soporta a sí misma con reacciones nucleares.
Durante la fase de gigante roja se produce el «primer dragado» en el que el material procesado en el núcleo en el interior de la estrella es transportado por la convección (propia de la envoltura de las gigantes rojas) hasta la superficie, tornándose así detectable.

Al encenderse el helio en estrellas de más de 0,5 MSol de masa inicial, la luminosidad de la estrella desciende ligeramente y su tamaño disminuye. Para estrellas de metalicidad solar, la temperatura superficial no varía mucho con respecto a la fase de gigante roja y esta fase recibe el nombre de apelotonamiento rojo (en inglés, red clump) pues las estrellas de masas similares aparecen agrupadas alrededor de un punto del diagrama. Para estrellas de menor metalicidad, la temperatura superficial aumenta y esta fase recibe el nombre de rama horizontal.

Llegado el momento, el helio del núcleo de la estrella se agota de la misma manera que antes se agotó el hidrógeno al final de la secuencia principal. La estrella pasa entonces a quemar el helio en capa y la estrella vuelve a escalar en el diagrama mientras su temperatura superficial se reduce y la estrella se vuelve a hinchar. Como la trayectoria seguida se asemeja a la que hizo antes en la fase de gigante roja, esta fase se conoce como la rama asintótica de las gigantes La estrella acabará hinchándose hasta un tamaño de aproximadamente el doble del que consiguió en la fase de gigante roja.
En esta fase la estrella alcanza la mayor luminosidad que jamás conseguirá, ya que al terminarla se quedará sin combustible nuclear. En ella se producen el segundo y el tercer dragados, en los que material reprocesado en el núcleo aflora en la superficie. Así mismo, al final de esta fase la estrella puede conseguir reactivar el quemado de hidrógeno en una capa relativamente externa de la estrella. La posibilidad de quemar dos especies distintas (hidrógeno y helio) en dos regiones de la estrella inducirá una inestabilidad que dará lugar a pulsos térmicos, los cuales causarán un fuerte aumento en la pérdida de masa de la estrella. Así, la estrella acabará expulsando sus capas exteriores en forma de nebulosa planetaria ionizada por el núcleo de la estrella, el cual acabará por convertirse en una enana blanca.

Estrellas de masa elevada (9 MSol < M < 30 MSol )

Las estrellas de masa superior a 9 MSol tienen una evolución radicalmente distinta a las de masa inferior por tres razones:
  1. Las temperaturas en su interior son los suficientemente altas como para quemar los elementos resultantes del proceso triple-alfa en fases sucesivas hasta llegar al hierro.
  2. La luminosidad es tan elevada que la evolución posterior a la secuencia principal dura únicamente de uno a unos pocos millones de años.
  3. Las estrellas masivas experimentan tasas de pérdida de masa mucho mayores que las de masa inferior. Ese efecto condicionará su desplazamiento en el diagrama.
Así pues, las estrellas de más de 9 MSol atravesarán fases sucesivas de quemado de hidrógeno, helio, carbono, neón, oxígeno y silicio. Al final de dicho proceso, la estrella acabará con una estructura interna similar a la de una cebolla, con diversas capas, cada una de una composición distinta.

Fases de supergigante azul (SGAz) y supergigante amarilla (SGAm)

Al acabar de quemar hidrógeno en la secuencia principal, las estrellas de masa elevada se mueven rápidamente en el diagrama de izquierda a derecha, esto es, manteniendo una luminosidad constante pero con su temperatura superficial decreciendo rápidamente. Así pues, la estrella pasa rápidamente (en decenas de miles de años o incluso menos) por las fases de supergigante azul (temperatura superficial en torno a los 20.000 K) y supergigante amarilla (temperatura superficial en torno a los 6.000 K) y, en la mayoría de los casos, casi todo el quemado del helio se produce ya en la siguiente fase (la de supergigante roja). No obstante, para algunas masas y elementos metálicos generados, los modelos teóricos predicen que el quemado de helio se producirá cuando la superficie de la estrella esté relativamente caliente. En esos casos, las fases de supergigante azul y/o amarilla podrán ser relativamente longevas (centenares de miles a un millón de años).

No hay comentarios:

Publicar un comentario