Disección de un caballo, grabado del Cours d´Hippiatrique, ou traité complet de la médicine des chevaux, Philippe-Étienne Lafosse, París 1.772

miércoles, 27 de enero de 2016

Júpiter asoló el sistema solar primitivo



Júpiter pudo barrer el sistema solar primitivo como una bola de demolición, destruyendo una primera generación de planetas interiores antes de retirarse a su órbita actual.  Esto ayuda a explicar por qué nuestro sistema solar es tan diferente de los cientos de otros sistemas planetarios que los astrónomos han descubierto en los últimos años.

Ahora que podemos mirar a nuestro propio sistema solar en el contexto de todos estos otros sistemas planetarios, una de las características más interesantes es la ausencia de planetas dentro de la órbita de Mercurio. El sistema planetario en nuestra galaxia parece ser un conjunto de súper-Tierras con periodos orbitales alarmantemente cortos. Nuestro sistema solar está siendo visto cada vez más como un bicho raro

Se explica no sólo el "agujero" en nuestro sistema solar interior, sino también ciertas características de la Tierra y otros planetas rocosos interiores, que se han desarrollado más tarde que los planetas exteriores a partir de una fuente agotada de material de formación planetaria.

En ese escenario, propuesto por un equipo de astrónomos en 2011 y conocido como el "Gran Tack", Júpiter migró primero hacia adentro, hacia el sol, hasta que la formación de Saturno hizo revertir su curso y moverse hacia el exterior a su posición actual.

En ese momento, es posible que planetas rocosos con atmósferas profundas se hayan estado formando cerca del sol a partir de un denso disco de gas y polvo en su camino por convertirse en típicas "súper-Tierras" como muchos de los exoplanetas que los astrónomos han encontrado alrededor otras estrellas.

Sin embargo, como Júpiter se movió hacia el interior, las perturbaciones gravitacionales del planeta gigante habrían barrido los planetas interiores, así como a planetesimales y asteroides más pequeños, en órbitas muy unidas y superpuestas, lo que desencadenó una serie de colisiones que rompieron todos los planetas nacientes en pedazos.  Entonces, los escombros resultantes habrían formados espirales en el sol bajo la influencia de un fuerte "viento en contra" procedente del denso gas que seguía girando alrededor del sol. La avalancha entrante habría destruido cualquier recién formada súper-Tierra llevándola hacia el sol.

Una segunda generación de planetas interiores se habría formado posteriormente a partir del material empobrecido que quedó, una idea consistente con la evidencia de que los planetas interiores de nuestro sistema solar son más jóvenes que los planetas exteriores. Los planetas interiores resultantes --Mercurio, Venus, la Tierra y Marte-- son también menos masivos y tienen atmósferas mucho más delgadas que lo que cabría esperar.

Los buscadores de planetas han detectado más de mil exoplanetas que orbitan estrellas en nuestra galaxia, incluyendo cerca de 500 sistemas con múltiples planetas. Lo que ha surgido a partir de estas observaciones sobre el sistema planetario "típico" es uno que consiste en un par de planetas con masas varias veces mayor que la de la Tierra (llamados súper-Tierras) que orbitan mucho más cerca de su estrella madre que Mercurio del sol.

En los sistemas con planetas gigantes similares a Júpiter, también tienden a estar mucho más cerca de sus estrellas que los planetas gigantes de nuestro sistema solar. Los planetas rocosos interiores de nuestro sistema solar, con masas relativamente bajas y atmósferas finas, pueden llegar a ser bastante anómalos.

La formación de planetas gigantes como Júpiter es un tanto rara, pero cuando se produce, el planeta gigante generalmente migra hacia el interior y termina a una distancia orbital similar a la de la Tierra. Sólo la formación de Saturno en nuestro propio sistema solar empujó a Júpiter hacia atrás y permitió que Mercurio, Venus, la Tierra y Marte se formaran.

miércoles, 20 de enero de 2016

¿Matemáticamente no hay agujeros negros?



Durante décadas, se ha creído que los agujeros negros se forman cuando una estrella masiva colapsa bajo su propia gravedad en un único punto en el espacio. A su alrededor se forma una membrana invisible, conocida como el 'horizonte de sucesos'. Cualquier el objeto que la sobrepase es engullido y no podrá dar marcha atrás en su camino. Es el punto en el que la atracción gravitacional de un agujero negro es tan fuerte que nada puede escapar de él.
   La existencia de los agujeros negros es tan extraña que se enfrenta a dos teorías fundamentales del Universo que se contradicen. Una, la teoría de la gravedad de Einstein, predice la formación de agujeros negros, pero la otra, una ley fundamental de la teoría cuántica, afirma que ninguna información del Universo puede desaparecer jamás. Los esfuerzos para combinar estas dos teorías llevan a un disparate matemático que llegó a ser conocido como la 'paradoja de la pérdida de información'.
   En 1974, Stephen Hawking utilizó la mecánica cuántica para demostrar que los agujeros negros emiten radiación. Desde entonces, los científicos han detectado las huellas dactilares en el cosmos que la muestran y se ha realizado la identificación de los agujeros negros que existen  en el cosmos.
   Sin embargo, Mersini-Houghton ha descrito en su trabajo un escenario completamente nuevo. Está de acuerdo con Hawking en que cuando una estrella colapsa bajo su propia gravedad se produce radiación. Pero en su trabajo muestra que, por el desprendimiento de esta radiación, la estrella también arroja masa. Tanto es así que a medida que se contrae ya no tiene la densidad para convertirse en un agujero negro.
   Antes de que se pueda formar un agujero negro, la estrella moribunda se hincha por última vez y luego explota. De este modo, el agujero negro nunca se forma y tampoco su 'horizonte de sucesos'. El mensaje principal de su trabajo es claro: no hay nada que exista similar a un agujero negro. Mediante la fusión de dos teorías aparentemente contradictorias, la investigadora Laura Mersini-Houghton ha demostrado matemáticamente que los agujeros negros no pueden llegar a existir.
   El trabajo no sólo obliga a los científicos a reimaginar el tejido del espacio-tiempo, sino también a repensar los orígenes del Universo.

jueves, 14 de enero de 2016

Futuro



Excepto por un acontecimiento imprevisible e inesperado, tal como la llegada de un agujero negro o una estrella a su espacio, los astrónomos estiman que el Sistema Solar, como lo conocemos hoy durará otros pocos cientos de millones de años, tiempo en el que se espera sea sometido a su primera transformación mayor. Los anillos de Saturno son bastante jóvenes y no se calcula que sobrevivan más allá de 300 millones de años. La gravedad de las lunas de Saturno gradualmente barrerá la orilla exterior de los anillos hacia el planeta y, finalmente, la abrasión por meteoritos y la gravedad de éste harán el resto, dejándolo sin sus característicos ornamentos., sin embargo, estudios recientes realizados en base a los datos tomados por la misión Cassini-Huygens muestran que los anillos pueden durar aún varios miles de millones de años más.
En algún momento dentro de 1,4 y 3,5 miles de millones de años contados desde ahora, la luna de Neptuno, Tritón, que está actualmente en una lenta órbita retrógrada, en declive alrededor de su compañero, caerá bajo el límite de Roche de Neptuno, tras lo que su fuerza de marea hará la luna pedazos, pudiendo crear un amplio sistema de anillos alrededor del planeta, similar al de Saturno.
Debido a la fricción de la marea contra el lecho marino, la Luna está gradualmente drenando el momento rotacional de la Tierra; esto, a su vez, causa que la Luna lentamente se retire de la Tierra, a una tasa de aproximadamente 38 mm por año. Mientras esto ocurre, la conservación del momento angular hace que la rotación del planeta disminuya, haciendo los días más largos por aproximadamente un segundo cada 60000 años. En alrededor de 2 mil millones de años, la órbita de la Luna alcanzará un punto conocido como "resonancia de giro y órbita", y tanto la Tierra como la Luna estarán sincronizados por sus mareas. El periodo orbital de la Luna, igualará el periodo de rotación de la Tierra y un lado de ésta apuntará eternamente hacia la Luna, justo del mismo modo que un lado de la Luna actualmente apunta hacia ella.

 Evolución solar

El Sol se está haciendo más brillante a una tasa de más o menos del diez por ciento cada mil millones de años. Se estima que dentro de mil millones de años, ello provocará un efecto invernadero descontrolado en la Tierra que hará que los océanos empiecen a evaporarse
Toda la vida sobre la superficie se extinguirá, aunque la vida podría sobrevivir en los océanos más profundos; se ha sugerido que finalmente nuestro planeta podría recordar a cómo es Titán, la mayor luna de Saturno, hoy: una región ecuatorial cubierta por campos de dunas, con fuertes tormentas ocasionales descargando allí y creando depósitos fluviales, y la poca agua líquida existente concentrada en los polos -el resto perdida a la atmósfera y destruida allí por la radiación solar
Dentro de 3,5 mil millones de años, la tierra alcanzará condiciones en su superficie similares a las de Venus (planeta) hoy en día; los océanos hervirán por completo, y toda la vida (en las formas conocidas) será imposible. Durante este tiempo es posible que la superficie de Marte recupere su atmósfera perdida, en tanto su temperatura se elevará, ya que el dioxido de carbono congelado y el vapor de agua en su superficie empezarán a sublimar.
Dentro de alrededor de 5 mil millones de años, las reservas de hidrógeno dentro del núcleo del Sol se habrán agotado y comenzará a utilizar aquellas en sus capas superiores menos densas. Durante este tiempo, es posible que en mundos alrededor de Júpiter, tales como Europa, la temperatura superficial se haga lo suficientemente apacible para que la superficie congelada se convierta en océanos líquidos que podrían alcanzar condiciones similares a aquellas requeridas para la vida humana actual.
Esto requerirá que se expanda ochenta veces su diámetro actual, y, en más o menos 7,5 mil millones de años en el futuro, volverse una gigante roja, fría y embotada por su muy incrementada área de superficie. Cuando el Sol se expanda casi ciertamente absorberá a Mercurio y Venus. Se espera que el Sol permanezca en una fase de gigante roja por alrededor de cien millones de años, alcanzando un diámetro alrededor de 170 veces mayor al que tiene ahora y una luminosidad más de 2300 veces superior.
Esto tendrá consecuencias dramáticas para la Tierra; prácticamente toda la atmósfera se perderá en el espacio debido a un potente viento solar y la temperatura de la superficie terrestre, la cual estará cubierta por un océano de magma en el que flotarán continentes de metales y óxidos metálicos y "glaciares" de materiales refractarios por entonces, puede sobrepasar en algunos momentos los 2000°. Además, la proximidad de la superficie estelar al sistema Tierra-Luna haga que la órbita lunar se vaya cerrando hasta que la Luna esté a alrededor de 18.000 kilómetros de la Tierra -el límite de Roche-, momento en el cual la [[gravedad terrestre destruirá la Luna convirtiéndola en unos anillos similares a los de Saturno. De todas formas, el fin del sistema Tierra-Luna es incierto y depende de la masa que pierda el Sol en ésos estadios finales de su evolución.
Recientes estudios muestran que, a diferencia de lo que se creyó por un tiempo (que la Tierra no sería aniquilada por el Sol), la Tierra será absorbida y destruida por nuestra estrella tras ser tragada por el Sol a causa de la abrasión y vaporización producida por su caída en espiral hacia el centro solar en un proceso que llevará apenas 200 años, aunque también existe la posibilidad de que sobreviva y de que el mencionado roce producido por el movimiento de nuestro planeta primero dentro de la atmósfera solar y luego dentro del astro despoje a nuestro planeta de sus capas externas, quedando solo su núcleo.
Finalmente, el helio producido en la superficie caerá de vuelta al núcleo, incrementando la densidad hasta que alcance los niveles necesarios para fundir el helio en carbono. El flash del helio ocurrirá entonces y el Sol se convertirá en una estrella de la rama horizontal; encogerá abruptamente a un tamaño de alrededor de 10 veces mayor que su radio original y su luminosidad descenderá de manera brusca, al caer su fuente de energía haya caído de nuevo a su núcleo. Debido a la relativa rareza del helio como opuesto al hidrógeno (se necesitan cuatro iones de hidrógeno para crear un núcleo de helio, y adicionalmente tres núcleos de helio para crear uno de carbono) y la tasa incrementada de reacciones debidas a la temperatura y presión en el núcleo del Sol, la fusión de helio en carbono durará solamente 100 millones de años mientras que alrededor del núcleo seguirá fusionándose el hidrógeno en helio. Finalmente tendrá que recurrir de nuevo a sus reservas en sus capas exteriores y recuperará su forma de gigante roja convirtiéndose en una estrella de la rama asintótica gigante, siendo entonces aún mayor y más luminosa que en su época de gigante roja (hasta más de 200 veces mayor y más de 5000 veces más brillante). Esta fase dura otros 100 millones de años, después de los cuales, sobre el curso de otros 100 000 años, las capas exteriores del Sol desaparecerán, expulsando un gran flujo de materia en el espacio y formando un halo conocido (de forma engañosa) como una nebulosa planetaria.
Este es un evento relativamente pacífico; nada semejante a una supernova, la cual nuestro Sol es demasiado pequeño como para sufrir. Los habitantes de la Tierra, si seguimos vivos para atestiguar este acontecimiento y si el planeta sigue existiendo por entonces, podremos observar un incremento masivo en la velocidad del viento solar, pero no lo suficiente como para destruir a la Tierra completamente.
Finalmente, todo lo que quedará del Sol será una enana blanca, un objeto caliente, sombrío y extraordinariamente denso; de la mitad de su masa original pero con sólo la mitad del tamaño de la Tierra. Si fuera visto desde la superficie terrestre, sería un punto de luz del tamaño de Venus con el brillo de cien soles actuales, aunque disminuyendo rápidamente.
Tan pronto como el Sol muera, su empuje gravitacional en los planetas, cometas y asteroides que lo orbitan, se debilitará. Las órbitas de la Tierra y de otros planetas se expandirán. Cuando el Sol se convierta en una enana blanca, se alcanzará la configuración final del Sistema Solar: Venus, la Tierra y Marte -si todavía existen-, orbitarán respectivamente a 1.35, 1.85 y 2.80 AU. Todo nuestro Sistema Solar se alterará drásticamente. Se, y los otros planetas restantes se congelarán como cáscaras oscuras, heladas y sin vida. Continuarán orbitando su estrella, con su velocidad reducida debida a su mayor distancia del Sol y a la reducida gravedad del Sol. Ése cambio de las órbitas planetarias también producirá que las de asteroides y cometas se inestabilicen hasta el punto de que algunas de ellas pueden llevar a dichos cuerpos tan cerca de la enana blanca solar que sean destruidas por las fuerzas de marea de ésta, produciendo un anillo de restos a su alrededor
Dos mil millones de años más tarde, el carbono en el núcleo del Sol se cristalizará, transformándose en un diamante gigante. Finalmente, luego de trillones de años más, se desvanecerá y morirá, por fin cesando de brillar completamente.

Otros eventos

Más o menos dentro de tres mil millones de años, con el Sol aún en su secuencia principal, Andrómeda se acercará a nuestra galaxia para tras varios pasos cercanos terminar colisionando y fundiéndose con ella. Si bien, ello podría afectar a nuestro Sistema Solar cómo un todo, es muy poco probable que pudiera afectar al Sol ó a los planetas dada la gran distancia a la que están las estrellas unas de otras, incluso en el caso de una colisión galáctica. Sin embargo, es bastante probable que el Sistema Solar sea expulsado de su posición actual y acabe en el halo de la galaxia recién formada.
Con el paso del tiempo, y ya con el Sol apagado y convertido en una enana negra, las posibilidades de que una estrella se acerque al Sistema Solar y arruine las órbitas planetarias irá aumentando. Si no se cumplen los escenarios que apuntan a un Big Crunch ó a un Big Rip, dentro de 1015 años la gravedad de las estrellas que hayan pasado cerca de éste habrán conseguido quitarle al Sol sus planetas. Si bien, todos ellos podrían sobrevivir aún mucho más tiempo, ello marcará el fin de nuestro Sistema Solar en el sentido en el que lo conocemos.